Problem 24.7

A hollow, insulating (non-conducting) sphere is
centered on a charge g, where g is defined to
the right below the sphere. A circular hole of
radius .001 meters is drilled into the sphere.
What is the flux through the hole?

The total flux through the sphere will be:
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ADDITIONAL STUFF:

Interesting, if we used Gauss’s Law to determine
the electric field, evaluated at the sphere’s
surface, we could then multiply that value by
the area of the hole to determine the flux
through the hole. As that will allow us to mess
with Gauss’s Law, let’s give it a try. First, a
summary:
1.) Gauss’s Law require you to evaluate the left
and right side of the following equation:
J‘ E ° dA = qcnclnscd
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2.) The action on the right side is quite literally the sum of the charges, signs
included, residing within the Gaussian surface. Determine that quantity is
usually the hardest part of the problem.

3.) The left side is essentially a dot product. Worked out, it looks like:
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The flux through the hole will be a fraction of
the whole such that:
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4.) There are a couple of things to notice about
this dot product.

a.) The differential area vector dA is ALWAYS
directed outward, relative to the surface, in
the + radial direction.

b.) In theory, the electric field’s direction
should be oriented outward in the + radial
direction if the net charge inside the Gaussian
surface is positive, and in the — radial
direction if the net charge inside the Gaussian
surface is negative.
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c.) The problem is that when you do a complex version of one of these
problems using variables instead of numbers (this, | might add, is the norm),
you can’t tell whether the net charge inside the Gaussian surface is positive
or negative.

d.) The way to deal with this is to always assume the direction of the E field
is outward in the + radial direction, which means that the dot product and,
hence, the left side of the equation, will ALWAYS be positive.
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e.) The electric field is supposed to be a

magnitude, which is to say positive. The

beauty of the assumption suggested in Part d

is that if you keep accurate track of the sign of

the charges inside the Gaussian surface (i.e.,

the right side of the equation) and you end up

with a net sign that’s negative, all that sign is

telling you is that your assumed direction of

the electric field (which was positive and J‘ EedA= Yenclosed
outward) was wrong, and it’s direction is s €,
opposite that. In short, you will never have to

divine the direction of the electric field so as
to get the right angle between E and dA for
the dot product. Cool, yes?
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5.) The left side of the relationship (the dot product) will, for a given geometry,
ALWAYS have the same general form. Our problem’s Gaussian surface assumes a
spherical geometry, so that is what we will take up first.
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And shazam, we’ve just derived the electric field function for a point charge.

Multiplying that by the area of the hole and we have the flux through the hole!
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6.) Noting that this is one of the rare occasions
when the right side is easy, we can write:
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Due to symmetry, the magnitude of E is the
same everywhere on the Gaussian surface.
Being constant, we can pull it out of the integral
leaving:
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The sum of all the differential surface areas over the entire surface is just equal
to the surface area of the Gaussian sphere. That means:
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